Irregular Tilings of Regular Polygons with Similar Triangles
نویسندگان
چکیده
Abstract We say that a triangle T tiles polygon A , if can be dissected into finitely many nonoverlapping triangles similar to . show $$N>42$$ N > 42 then there are at most three nonsimilar such the angles of rational multiples $$\pi $$ π and regular N -gon. tiling is called regular, pieces have two angles, $$\alpha α $$\beta β each vertex number same as Otherwise irregular. It known for every infinitely tile regularly. $$N>10$$ 10 -gon irregularly only Therefore,
منابع مشابه
Spherical F-Tilings by Triangles and r-Sided Regular Polygons, r >= 5
The study of dihedral f-tilings of the sphere S2 by spherical triangles and equiangular spherical quadrangles (which includes the case of 4-sided regular polygons) was presented in [3]. Also, in [6], the study of dihedral f-tilings of S2 whose prototiles are an equilateral triangle (a 3-sided regular polygon) and an isosceles triangle was described (we believe that the analysis considering scal...
متن کاملTilings by Regular Polygons Iii: Dodecagon-dense Tilings
In Tilings and Patterns, Grünbaum and Shephard claim that there are only four kuniform tilings by regular polygons (for some k) that have a dodecagon incident at every vertex. In fact, there are many others. We show that the tilings that satisfy this requirement are either the uniform 4.6.12 tiling, or else fall into one of two infinite classes of such tilings. One of these infinite classes can...
متن کاملSome Monohedral Tilings Derived From Regular Polygons
Some tiles derived from regular polygons can produce spiral tilings of the plane [1]. This paper considers some more general classes of tilings with tiles derived from regular polygons, some have central symmetry, many have periodic symmetry, some have both, and a few have no symmetry at all. Any of these tiling patterns could be the basis for some interesting mathematical art, for example by c...
متن کاملTilings with noncongruent triangles
We solve a problem of R. Nandakumar by proving that there is no tiling of the plane with pairwise noncongruent triangles of equal area and equal perimeter. We also show that no convex polygon with more than three sides can be tiled with finitely many triangles such that no pair of them share a full side.
متن کاملTiling Polygons with Lattice Triangles
Given a simple polygon with rational coordinates having one vertex at the origin and an adjacent vertex on the x-axis, we look at the problem of the location of the vertices for a tiling of the polygon using lattice triangles (i.e., triangles which are congruent to a triangle with the coordinates of the vertices being integer). We show that the coordinate of the vertices in any tiling are ratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Computational Geometry
سال: 2021
ISSN: ['1432-0444', '0179-5376']
DOI: https://doi.org/10.1007/s00454-021-00297-1